Acyclic Complexes and Graded Algebras
نویسندگان
چکیده
We already know that the noncommutative N-graded Noetherian algebras resemble commutative local rings in many respects. also have important property every minimal acyclic complex of finitely generated graded free modules is totally acyclic, and we want to generalize such properties algebra. By generalizing conclusions about combining what algebras, identify a class with acyclic. discuss how relationship between AS–Gorenstein AS–Cohen–Macaulay admits balanced dualizing complex. show belong this
منابع مشابه
Acyclic Quantum Cluster Algebras
This thesis concerns quantum cluster algebras. For skew-symmetric acyclic quantum cluster algebras, we express the quantum F -polynomials and the quantum cluster monomials in terms of Serre polynomials of quiver Grassmannians of rigid modules. Then we introduce a new family of graded quiver varieties together with a new t-deformation, and generalize Nakajima’s t-analogue of q-characters to thes...
متن کاملGraded Differential Geometry of Graded Matrix Algebras
We study the graded derivation-based noncommutative differential geometry of the Z2-graded algebra M(n|m) of complex (n+m)× (n+m)-matrices with the “usual block matrix grading” (for n 6= m). Beside the (infinite-dimensional) algebra of graded forms the graded Cartan calculus, graded symplectic structure, graded vector bundles, graded connections and curvature are introduced and investigated. In...
متن کاملGraded Hopf Algebras and Pairings
We study positively-graded Hopf algebras and obtain (dual) Gabriel-type results on graded Hopf algebras. Using it, we get certain (non-degenerate) graded Hopf pairings between quantum symmetric algebras.
متن کاملTwisted Graded Hecke Algebras
We generalize graded Hecke algebras to include a twisting twococycle for the associated finite group. We give examples where the parameter spaces of the resulting twisted graded Hecke algebras are larger than that of the graded Hecke algebras. We prove that twisted graded Hecke algebras are particular types of deformations of a crossed product.
متن کاملGraded Poisson Algebras
1.1. Graded vector spaces. By a Z-graded vector space (or simply, graded vector space) we mean a direct sum A = ⊕i∈ZAi of vector spaces over a field k of characteristic zero. The Ai are called the components of A of degree i and the degree of a homogeneous element a ∈ A is denoted by |a|. We also denote by A[n] the graded vector space with degree shifted by n, namely, A[n] = ⊕i∈Z(A[n])i with (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11143167